
LLNL-MI-692819

DOE-COE Breakouts

J. R. Neely, M. W. Epperly

May 23, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Tools	Breakout	–	Brian	Friesen,	Moderator	
	

Q:	What	tools	exist	today	that	help	achieve	performance	portability?	
	
Our	group	had	trouble	answering	this	question,	which	indicated	strongly	that	such	
tools	probably	don’t	exist.	Or,	if	they	do	exist,	they	are	not	readily	available.	For	
example,	ALCF	has	found	that	vendor-supplied	tools	(e.g.,	from	IBM),	are	rarely	
sufficient	or	useful,	and	as	a	result	they	rely	almost	entirely	on	3rd-party	tools,	e.g.,	
TAU.	Unfortunately	there	is	a	trend	that	some	of	these	tools	are	supported	directly	
or	indirectly	by	DOE	projects,	which	have	limited	lifetimes	(funding).	If	the	
developers	of	such	tools	can’t	find	a	way	to	support	themselves	outside	of	DOE,	then	
they’ll	be	stuck	when	the	project	ends.	TAU	is	a	success	story	which	has	avoided	this	
fate;	ParaTools	sustains	itself	independently	of	DOE.	Additionally,	the	group	agreed	
that	the	most	valuable	tools	available	to	everyone	in	the	HPC	community	are	
compilers.	In	fact,	there	were	some	interesting	comments	regarding	compilers	as	
tools	in	the	“afterward”	from	some	of	the	vendor	representatives	at	the	conclusion	
of	the	meeting.	John	Levesque,	for	example,	cautioned	that	developers	often	want	to	
use	bleeding-edge	features	of	compilers	without	fully	appreciating	the	performance	
implications	involved	in	doing	so.	Similarly,	James	Reinders	said	that	vendor	
compiler	teams’	goals	are	often	driven	by	the	specifications	in	the	procurement	
RFPs,	which	often	place	more	emphasis	on	support	for	bleeding-edge	features	than	
on	performance	and	stability.	(One	code	team	has	a	battery	of	18,000	regression	
tests	for	their	>1M	LOC	code,	and	Intel	v13	(!)	is	the	most	modern	version	of	the	
compiler	suite	which	can	pass	all	of	the	tests.)	
	
Very	quickly	the	discussion	then	focused	on	a	tool	that	already	is	available	and	is	
probably	the	most	valuable	to	everyone:	dissemination	of	knowledge.	Many	
developers	in	the	HPC	community	have	followed	many	different	paths	in	the	pursuit	
of	performance	portability,	but	because	the	knowledge	gained	from	these	exploits	
seems	to	be	shared	so	infrequently,	we	often	re-invent	the	wheel,	or	are	never	made	
aware	of	solutions	that	have	worked	well	for	others	who	are	working	on	similar	
problems.	
	

The	entire	breakout	group	agreed	strongly	with	the	notion	that	disseminating	
knowledge	and	experiences	with	regard	to	performance	portability	strategies	needs	
to	be	a	top	priority.	We	brainstormed	several	different	avenues	for	addressing	this,	
including	
	

• more	frequent	(and	perhaps	less	dense)	meetings	such	as	the	one	just	
concluded	in	Glenade	

• Collaborative	forums	of	some	form	
• A	webinar	series	



• Discussion	forums	
• Wiki	pages	

	
Things	of	this	sort	are	beginning	to	precipitate	already:	the	Trinity	COE	already	has	
begun	monthly	KNL	meetings,	and	IXPUG	has	similar	regular	meetings.	However,	a	
major	complication	in	attempting	to	implement	any	of	these	solutions	is	the	NDAs	
that	each	lab	has	with	various	vendors.	We	would	therefore	need	a	way	to	
institutionalize	these	kinds	of	venues	in	a	way	that	protects	confidential	
information,	e.g.,	by	allowing	access	only	to	people	with	e-mail	addresses	from	
corresponding	institutions.	
	
	

What	tools/interfaces	should	vendors	provide	to	extract	information	interest	
about	memory	access	patterns,	data	layout	in	memory	subsystems,	etc.?	
	
This	is	a	very	difficult	task	to	accomplish,	in	part	because	doing	do	requires	access	
to	things	like	hardware	counters.	Doing	things	like	tracking	loads/stores	is	possible	
(e.g.,	VTune’s	“memory	access”	mode),	but	the	complex	cache	hierarchy	in	KNL	
systems	makes	it	difficult	to	follow	individual	pieces	of	data	in	any	more	detail	than	
that.	As	a	result,	we	can	obtain	statistical	samples	of	somewhat	generic	memory	
access	patterns	(loads	and	stores),	but	gleaning	insight	from	those	statistics	can	be	
challenging.	The	group	also	discussed	the	barrage	of	available	flavors	of	malloc()	
and	prospects	for	leveraging	them	to	do	memory	access	analysis.	
	

How	can	applications	and	libraries	share	resources	amiably?	Can	an	application	
specify	what	portion	of	available	resources	it	is	willing	to	give	up	for	library	
calls?	
	
Intel’s	Math	Kernel	Library	(MKL)	is	a	mixed	bag	in	this	regard.	On	one	hand,	it	
allows	the	user	to	force	MKL	routines	to	use	the	same	set	of	existing	threads	from	
the	application	that	called	it,	rather	than	spawning	new	threads	inside	each	MKL	call	
(leading	to	unnecessary	nested	thread	parallelism	and	perhaps	degradation	in	
performance).	On	the	other	hand,	users	have	found	that	MKL	often	creates	
unnecessary	copies	of	small	matrices	during	calls	to	certain	linear	algebra	routines.	
	
The	group	also	discussed	the	prospect	of	an	application	allowing	(or	restricting)	a	
library	call’s	access	to	various	subsystems,	e.g.,	is	the	library	allowed	to	use	high-
bandwidth	memory,	or	should	it	be	restricted	to	DRAM?	It’s	not	clear	whose	
responsibility	that	should	be.	On	one	hand,	the	purpose	of	libraries	is	to	be	of	use	to	
a	wide	range	of	applications	and	therefore	should	support	generic,	flexible	
interfaces;	on	the	other	hand,	library	developers	should	not	be	expected	to	re-
architect	their	entire	interfaces	each	time	a	new	architecture	emerges.	
	



What	role	should	compiler	technology	play	in	performance	portability?	What	
features	do	we	already	have?	What	features	are	still	needed?	
	
As	discussed	in	an	earlier	section,	it	may	not	be	wise	to	demand	cutting-edge	feature	
support	from	compilers	when	they	already	suffer	from	stability	issues	stemming	
from	features	which	have	long	since	been	implemented.		(One	code	team	is	forced	to	
use	v13	of	the	Intel	compiler	suite	because	no	newer	version	can	pass	their	entire	
regression	test	suite.)	
	
Developers	have	often	experienced	lackluster	response	from	compiler	vendors	
when	reporting	bugs.	To	motivate	vendors	to	focus	more	heavily	on	compiler	
stability,	perhaps	we	should	take	John	Levesque’s	and	James	Reinders’s	comments	
seriously,	e.g.,	by	focusing	more	heavily	on	compiler	support	in	procurement	RFPs.		
As	it	stands	currently,	a	common	experience	is	for	a	site	to	lose	leverage	with	regard	
to	compiler	support	once	the	machine	has	been	accepted.	The	group	gravitated	
significantly	toward	this	idea	in	particular,	and	suggested	assembling	a	suite	of	
benchmarks	(composed	perhaps	of	mini-apps	contributed	from	the	community)	
that	must	compile	and	run	on	new	systems	(with	new	compilers)	before	they	are	
accepted.	
	
Another	common	experience	with	regard	to	compiler	technology	has	been	the	direct	
interaction	of	compiler	engineers	with	code	teams.	This	has	manifested	in	various	
forms	already,	including	the	“dungeon	sessions”	which	NERSC	and	others	have	
participated	in	with	Intel	over	the	last	year	as	part	of	the	NERSC-8	procurement.	
Compiler	bugs	which	can	be	shown	directly	to	engineers	are	often	elevated	to	high	
significance	within	the	vendor	software	teams	and	are	fixed	more	readily.	Someone	
also	suggested	inviting	compiler	engineers	to	COE	meetings	such	as	this	one,	both	to	
provide/receive	feedback	among	HPC	consumers/developers,	and	also	to	provide	
perspective	on	what	goes	into	writing	performant/stable/cutting-edge	compilers.	




